七年級上冊數(shù)學(xué)知識點總結(jié)大全
在年少學(xué)習(xí)的日子里,不管我們學(xué)什么,都需要掌握一些知識點,知識點就是掌握某個問題/知識的學(xué)習(xí)要點。哪些知識點能夠真正幫助到我們呢?下面是小編為大家整理的七年級上冊數(shù)學(xué)知識點總結(jié),歡迎閱讀與收藏。
七年級上冊數(shù)學(xué)知識點總結(jié) 1
第一章 有理數(shù)
1.1正數(shù)和負(fù)數(shù)
、侔0以外的數(shù)分為正數(shù)和負(fù)數(shù)。0是正數(shù)與負(fù)數(shù)的分界。
、谪(fù)數(shù):比0小的數(shù) 正數(shù):比0大的數(shù) 0既不是正數(shù),也不是負(fù)數(shù)
1.2有理數(shù)
1.2.1有理數(shù)
①正整數(shù),0,負(fù)整數(shù),正分?jǐn)?shù),負(fù)分?jǐn)?shù)都可以寫成分?jǐn)?shù)的形式,這樣的數(shù)稱為有理數(shù)。
②所有正整數(shù)組成正整數(shù)集合,所有負(fù)整數(shù)組成負(fù)整數(shù)集合。正整數(shù),0,負(fù)整數(shù)統(tǒng)稱整數(shù)。
1.2.2數(shù)軸
、倬哂性c,正方向,單位長度的直線叫數(shù)軸。
1.2.3相反數(shù)
①只有符號不同的數(shù)叫相反數(shù)。
、0的相反數(shù)是0 正數(shù)的相反數(shù)是負(fù)數(shù) 負(fù)數(shù)的相反數(shù)是正數(shù)
1.2.4絕對值
、俳^對值 |a|
、谛再|(zhì):正數(shù)的絕對值是它的本身
負(fù)數(shù)的絕對值的它的相反數(shù)
0的絕對值的0
1.2.5數(shù)的大小比較
、贁(shù)學(xué)中規(guī)定:在數(shù)軸上表示有理數(shù),它們從左到右的順序,就是從小到大的順序,即左邊的數(shù)小于右邊的數(shù)。
、谡龜(shù)大于0,0大于負(fù)數(shù),正數(shù)大于負(fù)數(shù)。兩個負(fù)數(shù),絕對值大的反而小。
1.3有理數(shù)的加減法
1.3.1有理數(shù)的加法
、偻杻蓴(shù)相加,取相同的符號,并把絕對值相加。
、诮^對值不相等的異號兩數(shù)相加,去絕對值較大的加數(shù)的符號,并用較大的絕對值減去較小的絕對值,互為相反數(shù)的兩個數(shù)相加得0。
、垡粋數(shù)同0相加,仍得這個數(shù)。
、芗臃ń粨Q律:兩個數(shù)相加,交換加數(shù)的位置,和不變。a+b=b+a
、菁臃ńY(jié)合律:三個數(shù)相加,先把前兩個數(shù)相加,或者先把后兩個數(shù)相加,和不變。(a+b)+c=(a+c)+b
1.3.2有理數(shù)的減法
、贉p去一個數(shù),等于加這個數(shù)的相反數(shù)。a-b=a+(-b)
1.4有理數(shù)的乘除法
1.4.1有理數(shù)的乘法
、賰蓴(shù)相乘,同號得正,異號的負(fù),并把絕對值相乘。
、谌魏螖(shù)同0相乘,都得0。
③乘積是1的兩個數(shù)互為倒數(shù)。
、軒讉不是0的數(shù)相乘,負(fù)因數(shù)的個數(shù)的偶數(shù)時,積是正數(shù);負(fù)因數(shù)的個數(shù)是奇數(shù)時,積是負(fù)數(shù)。
⑤乘法交換律:兩個數(shù)相乘,交換因數(shù)的位置,積相等。ab=ba
、蕹朔ńY(jié)合律:三個數(shù)相乘,先把前兩個數(shù)相乘,或者先把后兩個數(shù)相乘,積相等。(ab)c=(ac)b
、叱朔ǚ峙渎桑阂粋數(shù)同兩個數(shù)的和相乘,等于把這個數(shù)分別同這兩個數(shù)相乘,再把積相加。a(b+c)=ab+ac
1.4.2有理數(shù)的除法
①除以一個不等0的數(shù),等于乘以這個數(shù)的倒數(shù)。
、趦蓴(shù)相除,同號得正,異號得負(fù),并把絕對值相除。0除以任何一個不等于0的數(shù),都得0
、鄢顺旌线\算往往先將除法化成乘法,然后確定積的符號,最后求出結(jié)果。
④有理數(shù)的加減乘除混合運算,如無括號指出先做什么運算,則按照‘先乘除,后加減’的順序進(jìn)行。
1.5有理數(shù)的乘方
1.5.1乘方
、偾髇個相同因數(shù)的積的運算,叫做乘方,乘方的結(jié)果叫做冪。a叫做底數(shù),n 叫做指數(shù)。
②負(fù)數(shù)的奇次冪是負(fù)數(shù),負(fù)數(shù)的偶次冪的正數(shù)。
、壅龜(shù)的任何次冪都是正數(shù),0的任何正整數(shù)次冪都是0。
、茏鲇欣頂(shù)的混合運算時,應(yīng)注意以下運算順序:
1.先乘方,再乘除,最后加減;
2.同級運算,從左到右進(jìn)行;
3.如有括號,先做括號內(nèi)的運算,按小括號,中括號,大括號依次進(jìn)行。
1.5.2科學(xué)記數(shù)法。
、侔岩粋大于10的數(shù)表示成的形式(其中a是整數(shù)數(shù)位只有一位的數(shù),n是正整數(shù)),使用的是科學(xué)記數(shù)法。
1.5.3近似數(shù)
、僖粋數(shù)只是接近實際人數(shù),但與實際人數(shù)還有差別,它是一個近似數(shù)。
、诮茢(shù)與準(zhǔn)確數(shù)的接近程度,可以用精確度表示。
、蹚囊粋數(shù)的左邊第一個非0數(shù)字起,到末位數(shù)字止,所有的數(shù)字都是這個數(shù)的有效數(shù)字。
第二章 整式的加減
2.1整式
、賳雾検剑罕硎緮(shù)或字母積的式子
②單項式的系數(shù):單項式中的數(shù)字因數(shù)
、蹎雾検降拇螖(shù):一個單項式中,所有字母的指數(shù)和
、軒讉單項式的和叫做多項式。每個單項式叫做多項式的項,不含字母的項叫做常數(shù)項。
⑤多項式里次數(shù)最高項的次數(shù),叫做這個多項式的次數(shù)。
⑥單項式與多項式統(tǒng)稱整式。
2.2 整式的加減
①同類項:所含字母相同,而且相同字母的次數(shù)相同的單項式。
、诎讯囗検街械耐愴椇喜⒊梢豁,叫做合并同類項。
、酆喜⑼愴椇,所得項的系數(shù)是合并前各同類項的系數(shù)的和,且字母部分不變。
、苋绻ㄌ柾獾囊驍(shù)是正數(shù),去括號后原括號內(nèi)各項的符號與原來的符號相同。
、萑绻ㄌ柾獾囊驍(shù)是負(fù)數(shù),去括號后原括號內(nèi)各項的符號與原來的符號相反。
⑥一般地,幾個整式相加減,如果有括號就先去括號,然后再合并同類項。
第三章 一元一次方程
3.1從算式到方程
3.1.1一元一次方程
、俜匠蹋汉形粗獢(shù)的等式
、谝辉淮畏匠蹋褐缓幸粋未知數(shù),而且未知數(shù)的次數(shù)是1的方程。
、鄯匠痰慕猓菏狗匠讨械忍栕笥覂蛇呄嗟鹊奈粗獢(shù)的值
、芮蠓匠探獾倪^程叫做解方程。
、莘治鰧嶋H問題中的數(shù)量關(guān)系,利用其中的相等關(guān)系列出方程,是用數(shù)學(xué)解決實際問題的一種方法。
3.1.2等式的性質(zhì)
、俚仁降男再|(zhì)1:等式兩邊加(或減)同一個數(shù)(或式子),結(jié)果仍相等。
、诘仁降男再|(zhì)2:等式兩邊乘同一個數(shù),或除以同一個不為0的數(shù),結(jié)果仍相等。
3.2解一元一次方程(—)合并同類項與移項
、侔训仁揭贿叺哪稠椬兲柡笠频搅硪贿叄凶鲆祈。
3.3解一元一次方程(二) 去括號與去分母
①一般步驟:1.去分母
2.去括號
3.移項
4.合并同類項
5.系數(shù)化為一
3.4實際問題與一元一次方程
利用方程不僅能求具體數(shù)值,而且可以進(jìn)行推理判斷。
第四章 圖形認(rèn)識初步
4.1多姿多彩的圖形
4.1.1幾何圖形
、侔褜嵨镏谐橄蟪龅母鞣N圖形統(tǒng)稱為幾何圖形。
、趲缀螆D形的各部分不都在同一平面內(nèi),是立體圖形。
、塾行⿴缀螆D形的各部分都在同一平面內(nèi),它們是平面圖形。
、艹3S脧牟煌较蚩吹降钠矫鎴D形來表示立體圖形。(主視圖,俯視圖,左視圖)。
、萦行┝Ⅲw圖形是由一些平面圖形圍成的,將它們的表面適當(dāng)剪開,可以展開成平面圖形,這樣的平面圖形稱為相應(yīng)立體圖形的展開圖。
4.1.2點,線,面,體
、賻缀误w也簡稱體。
、诎鼑w的是面。面有平的面和曲的面兩種。
、勖婧兔嫦嘟坏牡胤叫纬删。(線有直線和曲線)
、芫和線相交的地方是點。(點無大小之分)
、蔹c動成線 ,線動成面,面動成體。
、迬缀螆D形都是由點,線,面,體組成的,點是構(gòu)成圖形的基本元素。
、唿c,線,面,體經(jīng)過運動變化,就能組合成各種各樣的幾何圖形,形成多姿多彩的圖形世界。
、嗑段的比較:1.目測法 2.疊合法 3.度量法
4.2 直線,射線,線
①經(jīng)過兩點有一條直線,并且只有一條直線。
、趦牲c確定一條直線。
③當(dāng)兩條不同的直線有一個公共點時,就稱這兩條直線相交,這個公共點叫做它們的交點。
、苌渚和線段都是直線的一部分。
、莅丫段分成相等的兩部分的點叫做中點。
、迌牲c的所有連線中,線段最短。(兩點之間,線段最短)
、哌B接兩點間的線段的長度,叫做這兩點的距離。
4.3 角
4.3.1角
、俳且彩且环N基本的幾何圖形。
、谟泄捕它c的兩條射線組成的圖形叫做角,這個公共端點是角的頂點,這兩條射線是角的兩條邊。角可以看作由一條射線繞著它的端點旋轉(zhuǎn)而形成的圖形。
、郯岩粋周角360等分,每一分就是1度的角,記作1°;把1度的角60等分,每一份叫做1分的角,記作1′;把1分的角60等分,每一份叫做1秒的角,記作1″。
、芙堑亩,分,秒是60進(jìn)制的,這和計量時間的時,分,秒是一樣的。
、菀远,分,秒為單位的角的度量制,叫做角度制。
4.3.2角的比較與運算
①從一個角的頂點出發(fā),把這個角分成相等的兩個角的射線,叫做這個角的平分線。
4.3.3余角和補角
、賰蓚角的和等于90°(直角),就說這兩個角互為余角,即其中每一個角是另一個角的余角。
、趦蓚角的和等于180°(平角),就說這兩個角互為補角,即其中一個角是另一個角的補角。
、鄣冉堑难a角相等。
、艿冉堑挠嘟窍嗟取
七年級上冊數(shù)學(xué)知識點總結(jié) 2
代數(shù)式中的一種有理式:不含除法運算或分?jǐn)?shù),以及雖有除法運算及分?jǐn)?shù),但除式或分母中不含變數(shù)者,則稱為整式。(分母中含有字母有除法運算的,那么式子叫做分式)
1、單項式:數(shù)或字母的積(如5n),單個的數(shù)或字母也是單項式。
。1)單項式的系數(shù):單項式中的數(shù)字因數(shù)及性質(zhì)符號叫做單項式的系數(shù)。(如果一個單項式,只含有數(shù)字因數(shù),系數(shù)是它本身,次數(shù)是0)。
。2)單項式的次數(shù):一個單項式中,所有字母的指數(shù)的和叫做這個單項式的次數(shù)(非零常數(shù)的次數(shù)為0)。
2、多項式
。1)概念:幾個單項式的和叫做多項式。在多項式中,每個單項式叫做多項式的項,其中不含字母的項叫做常數(shù)項。一個多項式有幾項就叫做幾項式。
。2)多項式的次數(shù):多項式中,次數(shù)最高的項的次數(shù),就是這個多項式的次數(shù)。
。3)多項式的排列:
把一個多項式按某一個字母的指數(shù)從大到小的順序排列起來,叫做把多項式按這個字母降冪排列;把一個多項式按某一個字母的指數(shù)從小到大的順序排列起來,叫做把多項式按這個字母升冪排列。
在做多項式的排列的題時注意:
(1)由于單項式的項包括它前面的性質(zhì)符號,因此在排列時,仍需把每一項的性質(zhì)符
看作是這一項的一部分,一起移動。
。2)有兩個或兩個以上字母的多項式,排列時,要注意:
a、先確認(rèn)按照哪個字母的指數(shù)來排列。
b、確定按這個字母降冪排列,還是升冪排列。
3、整式:單項式和多項式統(tǒng)稱為整式。
4、列代數(shù)式的幾個注意事項
。1)數(shù)與字母相乘,或字母與字母相乘通常使用“· ”乘,或省略不寫;
。2)數(shù)與數(shù)相乘,仍應(yīng)使用“×”乘,不用“· ”乘,也不能省略乘號;
。3)數(shù)與字母相乘時,一般在結(jié)果中把數(shù)寫在字母前面,如a×5應(yīng)寫成5a;
。4)帶分?jǐn)?shù)與字母相乘時,要把帶分?jǐn)?shù)改成假分?jǐn)?shù)形式;
。5)在代數(shù)式中出現(xiàn)除法運算時,一般用分?jǐn)?shù)線將被除式和除式聯(lián)系,如3÷a寫成3/a的形式;
。6)a與b的差寫作a—b,要注意字母順序;若只說兩數(shù)的差,當(dāng)分別設(shè)兩數(shù)為a、b時,則應(yīng)分類,寫做a—b和b—a 。
七年級上冊數(shù)學(xué)知識點總結(jié) 3
數(shù)軸
、睌(shù)軸的概念
規(guī)定了原點,正方向,單位長度的直線叫做數(shù)軸。
注意:
、艛(shù)軸是一條向兩端無限延伸的直線;
、圃c、正方向、單位長度是數(shù)軸的三要素,三者缺一不可;
⑶同一數(shù)軸上的單位長度要統(tǒng)一;
、葦(shù)軸的三要素都是根據(jù)實際需要規(guī)定的。
2.數(shù)軸上的點與有理數(shù)的關(guān)系
、潘械挠欣頂(shù)都可以用數(shù)軸上的點來表示,正有理數(shù)可用原點右邊的點表示,負(fù)有理數(shù)可用原點左邊的點表示,0用原點表示。
、扑械挠欣頂(shù)都可以用數(shù)軸上的點表示出來,但數(shù)軸上的點不都表示有理數(shù),也就是說,有理數(shù)與數(shù)軸上的點不是一一對應(yīng)關(guān)系。(如,數(shù)軸上的點π不是有理數(shù))
3.利用數(shù)軸表示兩數(shù)大小
⑴在數(shù)軸上數(shù)的大小比較,右邊的數(shù)總比左邊的數(shù)大;
、普龜(shù)都大于0,負(fù)數(shù)都小于0,正數(shù)大于負(fù)數(shù);
⑶兩個負(fù)數(shù)比較,距離原點遠(yuǎn)的數(shù)比距離原點近的數(shù)小。
4.數(shù)軸上特殊的(小)數(shù)
、抛钚〉淖匀粩(shù)是0,無的自然數(shù);
、谱钚〉恼麛(shù)是1,無的正整數(shù);
⑶的負(fù)整數(shù)是-1,無最小的負(fù)整數(shù)
5.a可以表示什么數(shù)
、臿>0表示a是正數(shù);反之,a是正數(shù),則a>0;
、芶<0表示a是負(fù)數(shù);反之,a是負(fù)數(shù),則a<0
、莂=0表示a是0;反之,a是0,,則a=0
七年級上冊數(shù)學(xué)知識點總結(jié) 4
相反數(shù)
⒈相反數(shù)
只有符號不同的兩個數(shù)叫做互為相反數(shù),其中一個是另一個的相反數(shù),0的相反數(shù)是0。
注意:
、畔喾磾(shù)是成對出現(xiàn)的;
、葡喾磾(shù)只有符號不同,若一個為正,則另一個為負(fù);
⑶0的相反數(shù)是它本身;相反數(shù)為本身的數(shù)是0。
2.相反數(shù)的性質(zhì)與判定
⑴任何數(shù)都有相反數(shù),且只有一個;
⑵0的相反數(shù)是0;
、腔橄喾磾(shù)的兩數(shù)和為0,和為0的兩數(shù)互為相反數(shù),即a,b互為相反數(shù),則a+b=0
3.相反數(shù)的幾何意義
在數(shù)軸上與原點距離相等的兩點表示的兩個數(shù),是互為相反數(shù);互為相反數(shù)的兩個數(shù),在數(shù)軸上的對應(yīng)點(0除外)在原點兩旁,并且與原點的距離相等。0的相反數(shù)對應(yīng)原點;原點表示0的相反數(shù)。說明:在數(shù)軸上,表示互為相反數(shù)的兩個點關(guān)于原點對稱。
4.相反數(shù)的求法
、徘笠粋數(shù)的相反數(shù),只要在它的前面添上負(fù)號“-”即可求得(如:5的相反數(shù)是-5);
⑵求多個數(shù)的和或差的相反數(shù)時,要用括號括起來再添“-”,然后化簡(如;5a+b的相反數(shù)是-(5a+b)。化簡得-5a-b);
、乔笄懊鎺А-”的單個數(shù),也應(yīng)先用括號括起來再添“-”,然后化簡(如:-5的相反數(shù)是-(-5),化簡得5)
5.相反數(shù)的表示方法
、乓话愕兀瑪(shù)a的相反數(shù)是-a,其中a是任意有理數(shù),可以是正數(shù)、負(fù)數(shù)或0。
當(dāng)a>0時,-a<0(正數(shù)的相反數(shù)是負(fù)數(shù))
當(dāng)a<0時,-a>0(負(fù)數(shù)的相反數(shù)是正數(shù))
當(dāng)a=0時,-a=0,(0的相反數(shù)是0)
七年級上冊數(shù)學(xué)知識點總結(jié) 5
角的性質(zhì):
。1)角的大小與邊的長短無關(guān),只與構(gòu)成角的兩條射線的幅度大小有關(guān)。
。2)角的大小可以度量,可以比較
。3)角可以參與運算。
時針問題:
時針每小時300,每分鐘0.50;分針每分鐘60;時針與分針每分鐘差5.50。
時針與分針夾角=分×5.50—時×300(分針靠近12點)
時針與分針夾角=時×300—分×5.50(時針靠近12點)
若結(jié)果大于1800,另一角度用3600減這個角度。
經(jīng)過多少時間重合、垂直、在一條線上,用求出的重合、垂直、在一條線上的時間減去現(xiàn)在的時間。追及問題還可用追及度數(shù)/5.5。
角的平分線
從一個角的頂點引出的一條射線,把這個角分成兩個相等的角,這條射線叫做這個角的平分線。
多邊形
由一些不在同一條直線上的線段依次首尾相連組成的封閉平面圖形,叫做多邊形。
從一個n邊形的同一個頂點出發(fā),分別連接這個頂點與其余各頂點,可以把這個n邊形分割成(n—2)個三角形。n邊形內(nèi)角和等于(n—2)×1800,正多邊形(每條邊都相等,每個內(nèi)角都相等的多邊形)的每個內(nèi)角都等于(n—2)×1800 / n
過n邊形一個頂點有(n—3)條對角線,n邊形共(n—3)×n / 2條對角線。
圓、弧、扇形
圓:平面上一條線段繞著固定的一個端點旋轉(zhuǎn)一周,另一個端點形成的圖形叫做圓。固定的端點稱為圓心
。簣A上A、B兩點之間的部分叫做圓弧,簡稱弧。
扇形:由一條弧和經(jīng)過這條弧的端點的兩條半徑所組成的圖形叫做扇形。
圓心角:頂點在圓心的角叫圓心角。
七年級上冊數(shù)學(xué)知識點總結(jié) 6
2.1整式
1、單項式:由數(shù)字和字母乘積組成的式子。系數(shù),單項式的次數(shù)。單項式指的是數(shù)或字母的積的代數(shù)式。單獨一個數(shù)或一個字母也是單項式。因此,判斷代數(shù)式是否是單項式,關(guān)鍵要看代數(shù)式中數(shù)與字母是否是乘積關(guān)系,即分母中不含有字母,若式子中含有加、減運算關(guān)系,其也不是單項式。
2、單項式的系數(shù):是指單項式中的數(shù)字因數(shù);
3、單項數(shù)的次數(shù):是指單項式中所有字母的指數(shù)的和。
4、多項式:幾個單項式的和。判斷代數(shù)式是否是多項式,關(guān)鍵要看代數(shù)式中的每一項是否是單項式。每個單項式稱項,常數(shù)項,多項式的次數(shù)就是多項式中次數(shù)的次數(shù)。多項式的次數(shù)是指多項式里次數(shù)項的次數(shù),這里ab是次數(shù)項,其次數(shù)是6;多項式的項是指在多項式中,每一個單項式。特別注意多項式的項包括它前面的性質(zhì)符號。
5、它們都是用字母表示數(shù)或列式表示數(shù)量關(guān)系。注意單項式和多項式的每一項都包括它前面的符號。
6、單項式和多項式統(tǒng)稱為整式。
2.2整式的加減
1、同類項:所含字母相同,并且相同字母的指數(shù)也相同的項。與字母前面的系數(shù)(≠0)無關(guān)。
2、同類項必須同時滿足兩個條件:
。1)所含字母相同;
。2)相同字母的次數(shù)相同,二者缺一不可。同類項與系數(shù)大小、字母的排列順序無關(guān)
3、合并同類項:把多項式中的同類項合并成一項?梢赃\用交換律,結(jié)合律和分配律。
4、合并同類項法則:合并同類項后,所得項的系數(shù)是合并前各同類項的系數(shù)的和,且字母部分不變;
5、去括號法則:去括號,看符號:是正號,不變號;是負(fù)號,全變號。
6、整式加減的一般步驟:一去、二找、三合
。1)如果遇到括號按去括號法則先去括號。
。2)結(jié)合同類項。
。3)合并同類項
七年級上冊數(shù)學(xué)知識點總結(jié) 7
第一章 豐富的圖形世界
1、幾何圖形
從實物中抽象出來的各種圖形,包括立體圖形和平面圖形。
2、點、線、面、體
(1)幾何圖形的組成
點:線和線相交的地方是點,它是幾何圖形中最基本的圖形。
線:面和面相交的地方是線,分為直線和曲線。
面:包圍著體的是面,分為平面和曲面。
體:幾何體也簡稱體。
(2)點動成線,線動成面,面動成體。
3、生活中的立體圖形
生活中的立體圖形
柱:棱柱:三棱柱、四棱柱(長方體、正方體)、五棱柱、……
正有理數(shù) 整數(shù)
有理數(shù) 零 有理數(shù)
負(fù)有理數(shù) 分?jǐn)?shù)
2、相反數(shù):只有符號不同的兩個數(shù)叫做互為相反數(shù),零的相反數(shù)是零
3、數(shù)軸:規(guī)定了原點、正方向和單位長度的直線叫做數(shù)軸(畫數(shù)軸時,三要素缺一不可)。任何一個有理數(shù)都可以用數(shù)軸上的一個點來表示。
4、倒數(shù):如果a與b互為倒數(shù),則有ab=1,反之亦成立。倒數(shù)等于本身的數(shù)是1和-1。零沒有倒數(shù)。
5、絕對值:在數(shù)軸上,一個數(shù)所對應(yīng)的點與原點的距離,叫做該數(shù)的絕對值,(|a|≥0)。若|a|=a,則a≥0;若|a|=-a,則a≤0。
正數(shù)的絕對值是它本身;負(fù)數(shù)的絕對值是它的相反數(shù);0的絕對值是0。互為相反數(shù)的兩個數(shù)的絕對值相等。
6、有理數(shù)比較大。赫龜(shù)大于0,負(fù)數(shù)小于0,正數(shù)大于負(fù)數(shù);數(shù)軸上的兩個點所表示的數(shù),右邊的總比左邊的大;兩個負(fù)數(shù),絕對值大的反而小。
7、有理數(shù)的運算:
(1)五種運算:加、減、乘、除、乘方
多個數(shù)相乘,積的符號由負(fù)因數(shù)的個數(shù)決定,當(dāng)負(fù)因數(shù)有奇數(shù)個時,積的符號為負(fù);當(dāng)負(fù)因數(shù)有偶數(shù)個時,積的符號為正。只要有一個數(shù)為零,積就為零。
有理數(shù)加法法則:
同號兩數(shù)相加,取相同的符號,并把絕對值相加。
異號兩數(shù)相加,絕對值值相等時和為0;絕對值不相等時,取絕對值較大的加數(shù)的符號,并用較大的絕對值減去較小的絕對值。
一個數(shù)同0相加,仍得這個數(shù)。
互為相反數(shù)的兩個數(shù)相加和為0。
有理數(shù)減法法則:減去一個數(shù),等于加上這個數(shù)的相反數(shù)!
有理數(shù)乘法法則:
兩數(shù)相乘,同號得正,異號得負(fù),并把絕對值相乘。
任何數(shù)與0相乘,積仍為0。
有理數(shù)除法法則:
兩個有理數(shù)相除,同號得正,異號得負(fù),并把絕對值相除。
0除以任何非0的數(shù)都得0。
注意:0不能作除數(shù)。
有理數(shù)的乘方:求n個相同因數(shù)a的積的運算叫做乘方。
正數(shù)的任何次冪都是正數(shù),負(fù)數(shù)的偶次冪是正數(shù),負(fù)數(shù)的奇次冪是負(fù)數(shù)。
(2)有理數(shù)的運算順序
先算乘方,再算乘除,最后算加減,如果有括號,先算括號里面的。
(3)運算律
加法交換律 加法結(jié)合律
乘法交換律 乘法結(jié)合律
乘法對加法的分配律
8、科學(xué)記數(shù)法
一般地,一個大于10的數(shù)可以表示成的形式,其中,n是正整數(shù),這種記數(shù)方法叫做科學(xué)記數(shù)法。(n=整數(shù)位數(shù)-1)
第三章 整式及其加減
1、代數(shù)式
用運算符號(加、減、乘、除、乘方、開方等)把數(shù)或表示數(shù)的字母連接而成的式子叫做代數(shù)式。單獨的一個數(shù)或一個字母也是代數(shù)式。
注意:①代數(shù)式中除了含有數(shù)、字母和運算符號外,還可以有括號;
、诖鷶(shù)式中不含有“=、>、<、≠”等符號。等式和不等式都不是代數(shù)式,但等號和不等號兩邊的式子一般都是代數(shù)式;
③代數(shù)式中的字母所表示的數(shù)必須要使這個代數(shù)式有意義,是實際問題的要符合實際問題的意義。
※代數(shù)式的書寫格式:
、俅鷶(shù)式中出現(xiàn)乘號,通常省略不寫,如vt;
、跀(shù)字與字母相乘時,數(shù)字應(yīng)寫在字母前面,如4a;
、蹘Х?jǐn)?shù)與字母相乘時,應(yīng)先把帶分?jǐn)?shù)化成假分?jǐn)?shù),如應(yīng)寫作;
④數(shù)字與數(shù)字相乘,一般仍用“×”號,即“×”號不省略;
、菰诖鷶(shù)式中出現(xiàn)除法運算時,一般寫成分?jǐn)?shù)的形式,如4÷(a-4)應(yīng)寫作;注意:分?jǐn)?shù)線具有“÷”號和括號的雙重作用。
、拊诒硎竞(或)差的代數(shù)式后有單位名稱的,則必須把代數(shù)式括起來,再將單位名稱寫在式子的后面,如平方米。
2、整式:單項式和多項式統(tǒng)稱為整式。
、賳雾検剑憾际菙(shù)字和字母乘積的形式的代數(shù)式叫做單項式。單項式中,所有字母的指數(shù)之和叫做這個單項式的次數(shù);數(shù)字因數(shù)叫做這個單項式的系數(shù)。
注意:1.單獨的一個數(shù)或一個字母也是單項式;2.單獨一個非零數(shù)的次數(shù)是0;3.當(dāng)單項式的系數(shù)為1或-1時,這個“1”應(yīng)省略不寫,如-ab的系數(shù)是-1,a3b的系數(shù)是1。
②多項式:幾個單項式的和叫做多項式。多項式中,每個單項式叫做多項式的項;次數(shù)最高的項的次數(shù)叫做多項式的次數(shù)。
3、同類項:所含字母相同,并且相同字母的指數(shù)也相同的項叫做同類項。
注意:①同類項有兩個條件:a.所含字母相同;b.相同字母的指數(shù)也相同。
、谕愴椗c系數(shù)無關(guān),與字母的排列順序無關(guān);
③幾個常數(shù)項也是同類項。
4、合并同類項法則:把同類項的系數(shù)相加,字母和字母的指數(shù)不變。
5、去括號法則
、俑鶕(jù)去括號法則去括號:
括號前面是“+”號,把括號和它前面的“+”號去掉,括號里各項都不改變符號;括號前面是“-”號,把括號和它前面的“-”號去掉,括號里各項都改變符號。
、诟鶕(jù)分配律去括號:
括號前面是“+”號看成+1,括號前面是“-”號看成-1,根據(jù)乘法的分配律用+1或-1去乘括號里的每一項以達(dá)到去括號的目的。
6、添括號法則
添“+”號和括號,添到括號里的各項符號都不改變;添“-”號和括號,添到括號里的各項符號都要改變。
7、整式的運算:
整式的加減法:(1)去括號;(2)合并同類項。
第四章 基本平面圖形
2、直線的性質(zhì)
(1)直線公理:經(jīng)過兩個點有且只有一條直線。(兩點確定一條直線。)
(2)過一點的直線有無數(shù)條。
(3)直線是是向兩方面無限延伸的,無端點,不可度量,不能比較大小。
3、線段的性質(zhì)
(1)線段公理:兩點之間的所有連線中,線段最短。(兩點之間線段最短。)
(2)兩點之間的距離:兩點之間線段的長度,叫做這兩點之間的距離。
(3)線段的大小關(guān)系和它們的長度的大小關(guān)系是一致的。
4、線段的中點:
點M把線段AB分成相等的兩條相等的線段AM與BM,點M叫做線段AB的中點。AM = BM =1/2AB (或AB=2AM=2BM)。
5、角:
有公共端點的兩條射線組成的圖形叫做角,兩條射線的公共端點叫做這個角的頂點,這兩條射線叫做這個角的邊。或:角也可以看成是一條射線繞著它的端點旋轉(zhuǎn)而成的。
6、角的表示
角的表示方法有以下四種:
、儆脭(shù)字表示單獨的角,如∠1,∠2,∠3等。
②用小寫的希臘字母表示單獨的一個角,如∠α,∠β,∠γ,∠θ等。
③用一個大寫英文字母表示一個獨立(在一個頂點處只有一個角)的角,如∠B,∠C等。
、苡萌齻大寫英文字母表示任一個角,如∠BAD,∠BAE,∠CAE等。
注意:用三個大寫字母表示角時,一定要把頂點字母寫在中間,邊上的字母寫在兩側(cè)。
7、角的度量
角的度量有如下規(guī)定:把一個平角180等分,每一份就是1度的角,單位是度,用“°”表示,1度記作“1°”,n度記作“n°”。
把1°的角60等分,每一份叫做1分的角,1分記作“1’”。
把1’的角60等分,每一份叫做1秒的角,1秒記作“1””。
1°=60’,1’=60”
8、角的平分線
從一個角的頂點引出的一條射線,把這個角分成兩個相等的角,這條射線叫做這個角的平分線。
9、角的性質(zhì)
(1)角的大小與邊的長短無關(guān),只與構(gòu)成角的兩條射線的幅度大小有關(guān)。
(2)角的大小可以度量,可以比較,角可以參與運算。
10、平角和周角:一條射線繞著它的端點旋轉(zhuǎn),當(dāng)終邊和始邊成一條直線時,所形成的角叫做平角。終邊繼續(xù)旋轉(zhuǎn),當(dāng)它又和始邊重合時,所形成的角叫做周角。
11、多邊形:由若干條不在同一條直線上的線段首尾順次相連組成的封閉平面圖形叫做多邊形。連接不相鄰兩個頂點的線段叫做多邊形的對角線。
從一個n邊形的同一個頂點出發(fā),分別連接這個頂點與其余各頂點,可以畫(n-3)條對角線,把這個n邊形分割成(n-2)個三角形。
12、圓:平面上,一條線段繞著一個端點旋轉(zhuǎn)一周,另一個端點形成的圖形叫做圓。固定的端點O稱為圓心,線段OA的長稱為半徑的長(通常簡稱為半徑)。
圓上任意兩點A、B間的部分叫做圓弧,簡稱弧,讀作“圓弧AB”或“弧AB”;由一條弧AB和經(jīng)過這條弧的端點的兩條半徑OA、OB所組成的圖形叫做扇形。頂點在圓心的角叫做圓心角。
第五章 一元一次方程
1、方程
含有未知數(shù)的等式叫做方程。
2、方程的解
能使方程左右兩邊相等的未知數(shù)的值叫做方程的解。
3、等式的性質(zhì)
(1)等式的兩邊同時加上(或減去)同一個代數(shù)式,所得結(jié)果仍是等式。
(2)等式的兩邊同時乘以同一個數(shù)((或除以同一個不為0的數(shù)),所得結(jié)果仍是等式。
4、一元一次方程
只含有一個未知數(shù),并且未知數(shù)的最高次數(shù)是1的整式方程叫做一元一次方程。
5、移項:把方程中的某一項,改變符號后,從方程的一邊移到另一邊,這種變形叫做移項.
6、解一元一次方程的一般步驟:
(1)去分母(2)去括號(3)移項(把方程中的某一項改變符號后,從方程的一邊移到另一邊,這種變形叫移項。)(4)合并同類項(5)將未知數(shù)的系數(shù)化為1
第六章 數(shù)據(jù)的收集與整理
1、普查與抽樣調(diào)查
為了特定目的對全部考察對象進(jìn)行的全面調(diào)查,叫做普查。其中被考察對象的全體叫做總體,組成總體的每一個被考察對象稱為個體。
從總體中抽取部分個體進(jìn)行調(diào)查,這種調(diào)查稱為抽樣調(diào)查,其中從總體抽取的一部分個體叫做總體的一個樣本。
2、扇形統(tǒng)計圖
扇形統(tǒng)計圖:利用圓與扇形來表示總體與部分的關(guān)系,扇形的大小反映部分占總體的百分比的大小,這樣的統(tǒng)計圖叫做扇形統(tǒng)計圖。(各個扇形所占的百分比之和為1)
圓心角度數(shù)=360°×該項所占的百分比。(各個部分的圓心角度數(shù)之和為360°)
3、頻數(shù)直方圖
頻數(shù)直方圖是一種特殊的條形統(tǒng)計圖,它將統(tǒng)計對象的數(shù)據(jù)進(jìn)行了分組畫在橫軸上,縱軸表示各組數(shù)據(jù)的頻數(shù)。
4、各種統(tǒng)計圖的特點
條形統(tǒng)計圖:能清楚地表示出每個項目的具體數(shù)目。
折線統(tǒng)計圖:能清楚地反映事物的變化情況。
扇形統(tǒng)計圖:能清楚地表示出各部分在總體中所占的百分比。
七年級上冊數(shù)學(xué)知識點總結(jié) 8
1.有理數(shù):
(1)凡能寫成x形式的數(shù),都是有理數(shù)。正整數(shù)、0、負(fù)整數(shù)統(tǒng)稱整數(shù);正分?jǐn)?shù)、負(fù)分?jǐn)?shù)統(tǒng)稱分?jǐn)?shù);整數(shù)和分?jǐn)?shù)統(tǒng)稱有理數(shù)。注意:0即不是正數(shù),也不是負(fù)數(shù);-a不一定是負(fù)數(shù),+a也不一定是正數(shù);p不是有理數(shù);
(2)有理數(shù)的分類:x①x②
2.數(shù)軸:
數(shù)軸是規(guī)定了原點、正方向、單位長度的一條直線。
3.相反數(shù):
(1)只有符號不同的兩個數(shù),我們說其中一個是另一個的相反數(shù);0的相反數(shù)還是0;
(2)相反數(shù)的和為0x?xa+b=0x?xa、b互為相反數(shù)。
4.絕對值:
(1)正數(shù)的絕對值是其本身,0的絕對值是0,負(fù)數(shù)的絕對值是它的相反數(shù);注意:絕對值的意義是數(shù)軸上表示某數(shù)的點離開原點的距離;
(2)x絕對值可表示為:x或x;絕對值的問題經(jīng)常分類討論;
5.有理數(shù)比大。
(1)正數(shù)的絕對值越大,這個數(shù)越大;(2)正數(shù)永遠(yuǎn)比0大,負(fù)數(shù)永遠(yuǎn)比0小;(3)正數(shù)大于一切負(fù)數(shù);(4)兩個負(fù)數(shù)比大小,絕對值大的反而;(5)數(shù)軸上的兩個數(shù),右邊的數(shù)總比左邊的數(shù)大;(6)大數(shù)-小數(shù)x>x0,小數(shù)-大數(shù)x 6.互為倒數(shù): 乘積為1的兩個數(shù)互為倒數(shù);注意:0沒有倒數(shù);若xa≠0,那么x的倒數(shù)是x;若ab=1?xa、b互為倒數(shù);若ab=-1?xa、b互為負(fù)倒數(shù)。 7.x有理數(shù)加法法則: (1)同號兩數(shù)相加,取相同的符號,并把絕對值相加; (2)異號兩數(shù)相加,取絕對值較大的符號,并用較大的絕對值減去較小的絕對值; (3)一個數(shù)與0相加,仍得這個數(shù)。 8.有理數(shù)加法的運算律: (1)加法的交換律:a+b=b+ax;(2)加法的結(jié)合律:(a+b)+c=a+(b+c). 9.有理數(shù)減法法則: 減去一個數(shù),等于加上這個數(shù)的相反數(shù);即a-b=a+(-b). 10x有理數(shù)乘法法則: (1)兩數(shù)相乘,同號為正,異號為負(fù),并把絕對值相乘; (2)任何數(shù)同零相乘都得零; (3)幾個數(shù)相乘,有一個因式為零,積為零;各個因式都不為零,積的符號由負(fù)因式的個數(shù)決定。 11x有理數(shù)乘法的運算律: (1)乘法的交換律:ab=ba;(2)乘法的結(jié)合律:(ab)c=a(bc); (3)乘法的分配律:a(b+c)=ab+acx. 12.有理數(shù)除法法則: 除以一個數(shù)等于乘以這個數(shù)的倒數(shù);注意:零不能做除數(shù),x. 13.有理數(shù)乘方的法則: (1)正數(shù)的任何次冪都是正數(shù); (2)負(fù)數(shù)的奇次冪是負(fù)數(shù);負(fù)數(shù)的偶次冪是正數(shù);注意:當(dāng)n為正奇數(shù)時:x(-a)n=-an或(ax-b)n=-(b-a)nx,x當(dāng)n為正偶數(shù)時:x(-a)nx=anx或x(a-b)n=(b-a)nx. 14.乘方的定義: (1)求相同因式積的運算,叫做乘方; (2)乘方中,相同的因式叫做底數(shù),相同因式的個數(shù)叫做指數(shù),乘方的結(jié)果叫做冪; 15.科學(xué)記數(shù)法: 把一個大于10的數(shù)記成a×10n的形式,其中a是整數(shù)數(shù)位只有一位的數(shù),這種記數(shù)法叫科學(xué)記數(shù)法。 16.近似數(shù)的精確位: 一個近似數(shù),四舍五入到那一位,就說這個近似數(shù)的精確到那一位。 17.有效數(shù)字: 從左邊第一個不為零的數(shù)字起,到精確的位數(shù)止,所有數(shù)字,都叫這個近似數(shù)的有效數(shù)字。 18.混合運算法則: 先乘方,后乘除,最后加減。 七年級上冊數(shù)學(xué)知識點總結(jié) 9 角的性質(zhì): 。1)角的大小與邊的長短無關(guān),只與構(gòu)成角的兩條射線的幅度大小有關(guān)。 (2)角的大小可以度量,可以比較 。3)角可以參與運算。 時針問題: 時針每小時300,每分鐘0.50;分針每分鐘60;時針與分針每分鐘差5.50。 時針與分針夾角=分×5.50—時×300(分針靠近12點) 時針與分針夾角=時×300—分×5.50(時針靠近12點) 若結(jié)果大于1800,另一角度用3600減這個角度。 經(jīng)過多少時間重合、垂直、在一條線上,用求出的重合、垂直、在一條線上的時間減去現(xiàn)在的時間。追及問題還可用追及度數(shù)/5.5。 角的平分線 從一個角的頂點引出的一條射線,把這個角分成兩個相等的角,這條射線叫做這個角的平分線。 多邊形 由一些不在同一條直線上的線段依次首尾相連組成的封閉平面圖形,叫做多邊形。 從一個n邊形的同一個頂點出發(fā),分別連接這個頂點與其余各頂點,可以把這個n邊形分割成(n—2)個三角形。n邊形內(nèi)角和等于(n—2)×1800,正多邊形(每條邊都相等,每個內(nèi)角都相等的多邊形)的每個內(nèi)角都等于(n—2)×1800 / n 過n邊形一個頂點有(n—3)條對角線,n邊形共(n—3)×n / 2條對角線。 圓、弧、扇形 圓:平面上一條線段繞著固定的一個端點旋轉(zhuǎn)一周,另一個端點形成的圖形叫做圓。固定的端點稱為圓心 。簣A上A、B兩點之間的部分叫做圓弧,簡稱弧。 扇形:由一條弧和經(jīng)過這條弧的端點的兩條半徑所組成的圖形叫做扇形。 圓心角:頂點在圓心的角叫圓心角。 七年級上冊數(shù)學(xué)知識點總結(jié) 10 (一)正負(fù)數(shù) 1.正數(shù):大于0的數(shù)。 2.負(fù)數(shù):小于0的數(shù)。 3.0即不是正數(shù)也不是負(fù)數(shù)。 4.正數(shù)大于0,負(fù)數(shù)小于0,正數(shù)大于負(fù)數(shù)。 (二)有理數(shù) 1.有理數(shù):由整數(shù)和分?jǐn)?shù)組成的數(shù)。包括:正整數(shù)、0、負(fù)整數(shù),正分?jǐn)?shù)、負(fù)分?jǐn)?shù)?梢詫懗蓛蓚整之比的形式。(無理數(shù)是不能寫成兩個整數(shù)之比的形式,它寫成小數(shù)形式,小數(shù)點后的數(shù)字是無限不循環(huán)的。如:π) 2.整數(shù):正整數(shù)、0、負(fù)整數(shù),統(tǒng)稱整數(shù)。 3.分?jǐn)?shù):正分?jǐn)?shù)、負(fù)分?jǐn)?shù)。 (三)數(shù)軸 1.數(shù)軸:用直線上的點表示數(shù),這條直線叫做數(shù)軸。(畫一條直線,在直線上任取一點表示數(shù)0,這個零點叫做原點,規(guī)定直線上從原點向右或向上為正方向;選取適當(dāng)?shù)拈L度為單位長度,以便在數(shù)軸上取點。) 2.數(shù)軸的三要素:原點、正方向、單位長度。 3.相反數(shù):只有符號不同的兩個數(shù)叫做互為相反數(shù)。0的相反數(shù)還是0。 4.絕對值:正數(shù)的絕對值是它本身,負(fù)數(shù)的絕對值是它的相反數(shù);0的絕對值是0,兩個負(fù)數(shù),絕對值大的反而小。 (四)有理數(shù)的加減法 1.先定符號,再算絕對值。 2.加法運算法則:同號相加,到相同符號,并把絕對值相加。異號相加,取絕對值大的加數(shù)的符號,并用較大的絕對值減去較小的絕對值。互為相反數(shù)的兩個數(shù)相加得0。一個數(shù)同0相加減,仍得這個數(shù)。 3.加法交換律:a+b=b+a兩個數(shù)相加,交換加數(shù)的位置,和不變。 4.加法結(jié)合律:(a+b)+c=a+(b+c)三個數(shù)相加,先把前兩個數(shù)相加,或者先把后兩個數(shù)相加,和不變。5.a?b=a+(?b)減去一個數(shù),等于加這個數(shù)的相反數(shù)。 (五)有理數(shù)乘法(先定積的符號,再定積的大小) 1.同號得正,異號得負(fù),并把絕對值相乘。任何數(shù)同0相乘,都得0。 2.乘積是1的兩個數(shù)互為倒數(shù)。 3.乘法交換律:ab=ba 4.乘法結(jié)合律:(ab)c=a(bc) 5.乘法分配律:a(b+c)=ab+ac (六)有理數(shù)除法 1.先將除法化成乘法,然后定符號,最后求結(jié)果。 2.除以一個不等于0的數(shù),等于乘這個數(shù)的倒數(shù)。 3.兩數(shù)相除,同號得正,異號得負(fù),并把絕對值相除,0除以任何一個不等于0的數(shù),都得0。(七)乘方1.求n個相同因數(shù)的積的運算,叫做乘方。寫作an。(乘方的結(jié)果叫冪,a叫底數(shù),n叫指數(shù))2.負(fù)數(shù)的奇數(shù)次冪是負(fù)數(shù),負(fù)數(shù)的偶次冪是正數(shù);0的任何正整數(shù)次冪都是0。3.同底數(shù)冪相乘,底不變,指數(shù)相加。 4.同底數(shù)冪相除,底不變,指數(shù)相減。 (八)有理數(shù)的加減乘除混合運算法則 1.先乘方,再乘除,最后加減。 2.同級運算,從左到右進(jìn)行。 3.如有括號,先做括號內(nèi)的運算,按小括號、中括號、大括號依次進(jìn)行。 (九)科學(xué)記數(shù)法、近似數(shù)、有效數(shù)字。 第二章整式(一)整式 1.整式:單項式和多項式的統(tǒng)稱叫整式。 2.單項式:數(shù)與字母的乘積組成的式子叫單項式。單獨的一個數(shù)或一個字母也是單項式。 3.系數(shù);一個單項式中,數(shù)字因數(shù)叫做這個單項式的系數(shù)。 4.次數(shù):一個單項式中,所有字母的指數(shù)和叫做這個單項式的次數(shù)。 5.多項式:幾個單項式的和叫做多項式。 6.項:組成多項式的每個單項式叫做多項式的項。 7.常數(shù)項:不含字母的項叫做常數(shù)項。 8.多項式的次數(shù):多項式中,次數(shù)的項的次數(shù)叫做這個多項式的次數(shù)。 9.同類項:多項式中,所含字母相同,并且相同字母的指數(shù)也相同的項叫做同類項。 10.合并同類項:把多項式中的同類項合并成一項,叫做合并同類項。 (二)整式加減整式加減運算時,如果遇到括號先去括號,再合并同類項。 1.去括號:一般地,幾個整式相加減,如果有括號就先去括號,然后再合并同類項。如果括號外的因數(shù)是正數(shù),去括號后原括號內(nèi)各項的符號與原來的符號相同。如果括號外的因數(shù)是負(fù)數(shù),去括號后原括號內(nèi)各項的符號與原來的符號相反。 2.合并同類項:把多項式中的同類項合并成一項,叫做合并同類項。合并同類項后,所得項的系數(shù)是合并前各同類項的系數(shù)的和,且字母部分不變 【七年級上冊數(shù)學(xué)知識點總結(jié)】相關(guān)文章: 七年級上冊數(shù)學(xué)的知識點總結(jié)08-19 七年級上冊數(shù)學(xué)知識點總結(jié)07-21 七年級上冊數(shù)學(xué)知識點總結(jié)03-14 七年級上冊數(shù)學(xué)知識點總結(jié)(經(jīng)典)07-05 七年級上冊數(shù)學(xué)知識點總結(jié)07-21 七年級數(shù)學(xué)上冊知識點總結(jié)04-12 【集合】七年級數(shù)學(xué)上冊知識點總結(jié)10-28 七年級數(shù)學(xué)上冊知識點08-28