毛片一区二区三区,国产免费网,亚洲精品美女久久久久,国产精品成久久久久三级

數(shù)學學習的九個方法和八個習慣

時間:2022-08-30 16:21:49 學習方法 我要投稿

數(shù)學學習的九個方法和八個習慣

  學習方法和學習習慣在數(shù)學學習中起著非常關(guān)鍵的作用,那么數(shù)學中經(jīng)常用到的學習方法和學習習慣都是什么?如何找到這些方法?下面和小編一起來看數(shù)學學習的九個方法和八個習慣,希望有所幫助!

數(shù)學學習的九個方法和八個習慣

  九個方法

  1、配方法

  通過把一個解析式利用恒等變形的方法,把其中的某些項配成一個或幾個多項式正整數(shù)次冪的和形式解決數(shù)學問題的方法,叫配方法。配方法用的最多的是配成完全平方式,它是數(shù)學中一種重要的恒等變形的方法,它的應用十分非常廣泛,在因式分解、化簡根式、解方程、證明等式和不等式、求函數(shù)的極值和解析式等方面都經(jīng)常用到它。

  2、因式分解法

  因式分解,就是把一個多項式化成幾個整式乘積的形式,是恒等變形的基礎(chǔ),它作為數(shù)學的一個有力工具、一種數(shù)學方法在代數(shù)、幾何、三角等的解題中起著重要的作用。因式分解的方法有許多,除中學課本上介紹的提取公因式法、公式法、分組分解法、十字相乘法等外,還有如利用拆項添項、求根分解、換元、待定系數(shù)等等。

  3、換元法

  換元法是數(shù)學中一個非常重要而且應用十分廣泛的解題方法。通常把未知數(shù)或變數(shù)稱為元,所謂換元法,就是在一個比較復雜的數(shù)學式子中,用新的變元去代替原式的一個部分或改造原來的式子,使它簡化,使問題易于解決。

  4、判別式法與韋達定理

  一元二次方程ax2bxc=0(a、b、c屬于R,a≠0)根的判別△=b2-4ac,不僅用來判定根的性質(zhì),而且作為一種解題方法,在代數(shù)式變形,解方程(組),解不等式,研究函數(shù)乃至幾何、三角運算中都有非常廣泛的應用。

  韋達定理除了已知一元二次方程的一個根,求另一根;已知兩個數(shù)的和與積,求這兩個數(shù)等簡單應用外,還可以求根的對稱函數(shù),計論二次方程根的符號,解對稱方程組,以及解一些有關(guān)二次曲線的問題等,都有非常廣泛的應用。

  5、待定系數(shù)法

  在解數(shù)學問題時,若先判斷所求的結(jié)果具有某種確定的形式,其中含有某些待定的系數(shù),而后根據(jù)題設(shè)條件列出關(guān)于待定系數(shù)的等式,最后解出這些待定系數(shù)的值或找到這些待定系數(shù)間的某種關(guān)系,從而解答數(shù)學問題,這種解題方法稱為待定系數(shù)法。它是中學數(shù)學中常用的方法之一。

  6、構(gòu)造法

  在解題時,我們常常會采用這樣的方法,通過對條件和結(jié)論的分析,構(gòu)造輔助元素,它可以是一個圖形、一個方程(組)、一個等式、一個函數(shù)、一個等價命題等,架起一座連接條件和結(jié)論的橋梁,從而使問題得以解決,這種解題的數(shù)學方法,我們稱為構(gòu)造法。運用構(gòu)造法解題,可以使代數(shù)、三角、幾何等各種數(shù)學知識互相滲透,有利于問題的解決。

  7、面積法

  平面幾何中講的面積公式以及由面積公式推出的與面積計算有關(guān)的性質(zhì)定理,不僅可用于計算面積,而且用它來證明平面幾何題有時會收到事半功倍的效果。運用面積關(guān)系來證明或計算平面幾何題的方法,稱為面積方法,它是幾何中的一種常用方法。

  用歸納法或分析法證明平面幾何題,其困難在添置輔助線。面積法的特點是把已知和未知各量用面積公式聯(lián)系起來,通過運算達到求證的結(jié)果。所以用面積法來解幾何題,幾何元素之間關(guān)系變成數(shù)量之間的關(guān)系,只需要計算,有時可以不添置補助線,即使需要添置輔助線,也很容易考慮到。

  8、幾何變換法

  在數(shù)學問題的研究中,常常運用變換法,把復雜性問題轉(zhuǎn)化為簡單性的問題而得到解決。所謂變換是一個集合的任一元素到同一集合的元素的一個一一映射。中學數(shù)學中所涉及的變換主要是初等變換。有一些看來很難甚至于無法下手的習題,可以借助幾何變換法,化繁為簡,化難為易。另一方面,也可將變換的觀點滲透到中學數(shù)學教學中。將圖形從相等靜止條件下的研究和運動中的研究結(jié)合起來,有利于對圖形本質(zhì)的認識。

  幾何變換包括:

  (1)平移;

  (2)旋轉(zhuǎn);

  (3)對稱。

  9、反證法

  反證法是一種間接證法,它是先提出一個與命題的結(jié)論相反的假設(shè),然后,從這個假設(shè)出發(fā),經(jīng)過正確的推理,導致矛盾,從而否定相反的假設(shè),達到肯定原命題正確的一種方法。反證法可以分為歸謬反證法(結(jié)論的反面只有一種)與窮舉反證法(結(jié)論的反面不只一種)。用反證法證明一個命題的步驟,大體上分為:

  (1)反設(shè);

  (2)歸謬;

  (3)結(jié)論。

  反設(shè)是反證法的基礎(chǔ),為了正確地作出反設(shè),掌握一些常用的互為否定的表述形式是有必要的,例如:是/不是;存在/不存在;平行于/不平行于;垂直于/不垂直于;等于/不等于;大(小)于/不大(小)于;都是/不都是;至少有一個/一個也沒有;至少有n個/至多有(n一1)個;至多有一個/至少有兩個;唯一/至少有兩個。

  歸謬是反證法的關(guān)鍵,導出矛盾的過程沒有固定的`模式,但必須從反設(shè)出發(fā),否則推導將成為無源之水,無本之木。推理必須嚴謹。導出的矛盾有如下幾種類型:與已知條件矛盾;與已知的公理、定義、定理、公式矛盾;與反設(shè)矛盾;自相矛盾。

  八個習慣

  1、課上高度專注

  數(shù)學學習,主要是在課堂上,所以課內(nèi)的學習效率非常重要。正確的學習方法是:上課緊跟老師的思路,開動思維預測接下來的步驟,對比自己與老師在解題思路上的不同。課后復習不留疑點。要特別抓住基礎(chǔ)知識點和基本技巧運用,將知識的點、線、面結(jié)合起來交織成知識網(wǎng)絡(luò),形成自己的知識體系。

  2、課下主動預習

  學習不能只等著老師來教。要想有好成績,須牢牢抓住預習、聽課、作業(yè)、復習這四個基本環(huán)節(jié)。其中,課前預習教材可以幫助孩子了解新知識的要點、重點、發(fā)現(xiàn)疑難,從而可以在課堂內(nèi)重點解決,掌握聽課的主動權(quán),使聽課具有針對性。

  3、各類題型熟練掌握

  學好數(shù)學,熟悉各種題型是必須的。從基礎(chǔ)題入手,以課本上的習題為準,反復練習打好基礎(chǔ),再找一些課外的習題,以幫助開拓思路,提高分析問題、解決問題的能力,掌握解題規(guī)律。

  4、審題仔細不馬虎

  審題能力是學生多種能力的綜合表現(xiàn)。做題要審題,預習要仔細閱讀教材內(nèi)容,學會抓住字眼,正確理解內(nèi)容,對提示語、旁注、公式、法則、定律、圖示等關(guān)鍵性內(nèi)容更要認真推敲、反復琢磨,準確把握每個知識點的內(nèi)涵與外延。

  5、獨立思考完成作業(yè)

  一般來說,獨立完成的東西,印象比較深刻。不盲跟隨成績好的同學的看法;不抄襲他人現(xiàn)成答案;課后作業(yè)要按質(zhì)、按時完成,并能作到舉一反三,多思多想。

  6、愛問問題

  高分學生的主要特點之一,就是愛問問題,這里的問問題不是盲目的,而是帶著自己的思考去問。在自己解決了多少次沒有找到途徑的時候,尋求幫助。問問題,是學生真正進行思考的反應,想要尋求的答案也不僅僅局限于一道題,而是一種思維方式。

  7、善于用數(shù)學知識解決問題

  學習的目的在于應用。高分學生更愿意主動表達自己對學習問題的見解。不要悶頭苦學,這樣才能對學到的知識加以靈活運用,能起到鞏固和消化知識的作用,有利于將知識轉(zhuǎn)化成能力,還能培養(yǎng)學習數(shù)學的興趣。

  8、能正確對待考試

  心理素質(zhì)是一個學生學習成敗的關(guān)鍵。多少成績優(yōu)異的學子最后毀在了心態(tài)上。調(diào)整心態(tài),冷靜下來,思路清晰,對自己有信心,坦然面對,對于一些容易的基礎(chǔ)題要有十二分把握拿全分;對于一些難題,也要盡量拿分,考試中要使自己的水平正常甚至超常發(fā)揮。

  拓展:數(shù)學高效學習技巧

  一、掌握預習學習方法,培養(yǎng)數(shù)學自學能力

  預習就是在課前學習課本新知識的學習方法,要學好初中數(shù)學,首先要學會預習數(shù)學新知識,因為預習是聽好課,掌握好課堂知識的先決條件,是數(shù)學學習中必不可少的環(huán)節(jié)。預習可以用“一劃、二批、三試、四分”的預習方法。“一劃”就是圈劃知識要點,基本概念。“二批”就是把預習時的體會、見解以及自己暫時不能理解的內(nèi)容,批注在書的空白地方;“三試”就是嘗試性地做一些簡單的練習,檢驗自己預習的效果。“四分”就是把自己預習的這節(jié)知識要點列出來,分出哪些是通過預習已掌握了的,哪些知識是自己預習不能理解掌握了的,需要在課堂學習中進一步學習。

  二、掌握課堂學習方法,提高課堂學習效果

  課堂學習是學習過程中最基本,最重要的環(huán)節(jié),要堅持做到“五到”即耳到、眼到、口到、心到、手到;

  手到:就是以簡單扼要的方法記下聽課的要點,思維方法,以備復習、消化、再思考,但要以聽課為主,記錄為輔;

  耳到:專心聽講,聽老師如何講課,如何分析、如何歸納總結(jié)。另外,還要聽同學們的解答,看是否對自己有所啟發(fā),特別要注意聽自己預習未看懂的問題;

  口到:主動與老師、同學們進行合作、探究,敢于提出問題,并發(fā)表自己的看法,不要人云亦云;

  眼到:就是一看老師講課的表情,手勢所表達的意思,看老師的演示實驗、板書內(nèi)容,二看老師要求看的課本內(nèi)容,把書上知識與老師課堂講的知識聯(lián)系起來;

  心到:就是課堂上要認真思考,注意理解課堂的新知識,課堂上的思考要主動積極。關(guān)鍵是理解并能融匯貫通,靈活使用。對于老師講的新概念,應抓住關(guān)鍵字眼,變換角度去理解。

  三、掌握練習方法,提高解答數(shù)學題的能力

  數(shù)學的解答能力,主要通過實際的練習來提高。數(shù)學練習應注意以下幾點:

  1、端正態(tài)度,充分認識到數(shù)學練習的重要性。實際練習不僅可以提高解答速度,掌握解答技能技巧,而且,許多的新問題常在練習中出現(xiàn)。

  2、要有自信心與意志力。數(shù)學練習常有繁雜的計算,深奧的證明,自己應有充足的信心,頑強的意志,耐心細致的習慣。

  3、要養(yǎng)成先思考,后解答,再檢查的良好習慣,遇到一個題,不能盲目地進行練習,無效計算,應先深入領(lǐng)會題意,認真思考,抓住關(guān)鍵,再作解答。解答后,還應進行檢查。

  4、細觀察、活運用、尋規(guī)律、成技巧。

  四、掌握復習方法,提高數(shù)學綜合能力。

  復習是記憶之母,對所學的知識要不斷地復習,復習鞏固應注意掌握以下方法。

  1、合理安排復習時間,“趁熱打鐵”,當天學習的功課當天必須復習,無論當天作業(yè)有多少,多難,都要鞏固復習。

  2、采用綜合復習方法,即通過找出知識的左右關(guān)系和縱橫之間的內(nèi)在聯(lián)系,從整體上提高,綜合復習具體可分“三步走”:首先是統(tǒng)觀全局,瀏覽全部內(nèi)容,通過喚起回憶,初步形成知識體系印象,其次是加深理解,對所學內(nèi)容進行綜合分析,最后是整理鞏固,形成完整的知識體系。

  3、突破薄弱環(huán)節(jié)的復習方法。要多在薄弱環(huán)節(jié)上下功夫,加強鞏固好課本知識,只有突破薄弱環(huán)節(jié),才利于從整體上提高數(shù)學綜合能力。

【數(shù)學學習的九個方法和八個習慣】相關(guān)文章:

學習數(shù)學的方法和技巧03-09

作文:學習中的八個習慣08-09

培養(yǎng)的10個學習方法和學習習慣01-19

語文學習應養(yǎng)成八個習慣12-05

高中數(shù)學學習方法的八個訣竅07-29

讓學生學會學習,培養(yǎng)學生的學習方法和學習習慣(網(wǎng)友來稿)12-07

高考數(shù)學狀元的學習心得和方法04-07

培養(yǎng)學習習慣好方法08-30

學習數(shù)學的學習方法01-04