高一數(shù)學對數(shù)函數(shù)說課稿范文
說課的內(nèi)容是《對數(shù)函數(shù)》,現(xiàn)就教材、教法、學法、教學程序、板書五個方面進行說明。懇請在座的各位專家、老師批評指正。
一、說教材
1、教材的地位、作用及編寫意圖
《對數(shù)函數(shù)》出現(xiàn)在職業(yè)高中數(shù)學第一冊第四章第八節(jié)。函數(shù)是高中數(shù)學的核心,對數(shù)函數(shù)是函數(shù)的重要分支,對數(shù)函數(shù)的知識在數(shù)學和其 他許多學科中有著廣泛的應用;學生已經(jīng)學習了對數(shù)、反函數(shù)以及指數(shù)函數(shù)等內(nèi)容,這為過渡到本節(jié)的學習起著鋪墊作用;“對數(shù)函數(shù)”這節(jié)教材,指出對數(shù)函數(shù)和指數(shù)函數(shù)互為反函數(shù),反映了兩個變量的相互關系,蘊含了函數(shù)與方程的數(shù)學思想與數(shù)學方法,是以后數(shù)學學習中不可缺少的部分,也是高考的必考內(nèi)容。
2、教學目標的確定及依據(jù)。
依據(jù)教學大綱和學生獲得知識、培養(yǎng)能力及思想教育等方面的要求:我制定了如下教育教學目標:
(1) 知識目標:理解對數(shù)函數(shù)的概念、掌握對數(shù)函數(shù)的圖象和性質(zhì)。
(2) 能力目標:培養(yǎng)學生自主學習、綜合歸納、數(shù)形結合的能力。
(3) 德育目標:培養(yǎng)學生對待知識的科學態(tài)度、勇于探索和創(chuàng)新的精神。
(4) 情感目標:在民主、和諧的教學氣氛中,促進師生的情感交流。
3、教學重點、難點及關鍵
重點:對數(shù)函數(shù)的概念、圖象和性質(zhì);
難點:利用指數(shù)函數(shù)的圖象和性質(zhì)得到對數(shù)函數(shù)的圖象和性質(zhì);
關鍵:抓住對數(shù)函數(shù)是指數(shù)函數(shù)的反函數(shù)這一要領。
二、說教法
教學過程是教師和學生共同參與的過程,啟發(fā)學生自主性學習,充分調(diào)動學生的積極性、主動性;有效地滲透數(shù)學思想方法,提高學生素質(zhì)。根據(jù)這樣的原則和所要完成的教學目標,并為激發(fā)學生的學習興趣,我采用如下的教學方法:
(1)啟發(fā)引導學生思考、分析、實驗、探索、歸納。
(2)采用“從特殊到一般”、“從具體到抽象”的方法。
(3)體現(xiàn)“對比聯(lián)系”、“數(shù)形結合”及“分類討論”的思想方法。
(4)多媒體演示法。
三、說學法
教給學生方法比教給學生知識更重要,本節(jié)課注重調(diào)動學生積極思考、主動探索,盡可能地增加學生參與教學活動的時間和空間,我進行了以下學法指導:
(1)對照比較學習法:學習對數(shù)函數(shù),處處與指數(shù)函數(shù)相對照。
(2)探究式學習法:學生通過分析、探索、得出對數(shù)函數(shù)的定義。
(3)自主性學習法:通過實驗畫出函數(shù)圖象、觀察圖象自得其性質(zhì)。
(4)反饋練習法:檢驗知識的應用情況,找出未掌握的內(nèi)容及其差距。
這樣可發(fā)揮學生的主觀能動性,有利于提高學生的各種能力。
四、說教學程序
1、復習導入
。1)復習提問:什么是對數(shù)?如何求反函數(shù)?指數(shù)函數(shù)的圖象和性質(zhì)如何?學生回答,并利用課件展示一下指數(shù)函數(shù)的圖象和性質(zhì)。
設計意圖:設計的提問既與本節(jié)內(nèi)容有密切關系,又有利于引入新課,為學生理解新知清除了障礙,有意識地培養(yǎng)學生分析問題的能力。
。2)導言:指數(shù)函數(shù)有沒有反函數(shù)?如果有,如何求指數(shù)函數(shù)的反函數(shù)?它的反函數(shù)是什么?
設計意圖:這樣的導言可激發(fā)學生求知欲,使學生渴望知道問題的答案。
2、認定目標(出示教學目標)
3、導學達標
按"教師為主導,學生為主體,訓練為主線”的原則,安排師生互動活動.
。1)對數(shù)函數(shù)的概念
引導學生從對數(shù)式與指數(shù)式的關系及反函數(shù)的概念進行分析并推導出,指數(shù)函數(shù)有反函數(shù),并且y=ax(a>0且a≠1)的反函數(shù)是 y=logax,見課件。 把函數(shù)y=logax叫做對數(shù)函數(shù),其中a>0且a≠1。從而引出對數(shù)函數(shù)的概念,展示課件。
設計意圖:對數(shù)函數(shù)的概念比較抽象,利用已經(jīng)學過的知識逐步分析,這樣引出對數(shù)函數(shù)的概念過渡自然,學生易于接受。
因為對數(shù)函數(shù)是指數(shù)函數(shù)的反函數(shù),讓學生比較它們的定義域、值域、對應法則及圖象間的關系,培養(yǎng)學生參與意識,通過比較充分體現(xiàn)指數(shù)函數(shù)及對數(shù)函數(shù)的內(nèi)在聯(lián)系。
。2)對數(shù)函數(shù)的圖象
提問:同指數(shù)函數(shù)一樣,在學習了函數(shù)的定義之后,我們要畫函數(shù)的圖象,應如何畫對數(shù)函數(shù)的圖象呢?讓學生思考并回答,用描點法畫圖。教師肯定,我們每學習一種新的函數(shù)都可以根據(jù)函數(shù)的解析式,列表、描點畫圖。再考慮一下,我們還可以用什么方法畫出對數(shù)函數(shù)的圖象呢?
讓學生回答,畫出指數(shù)函數(shù)關于直線y=x對稱的圖象,就是對數(shù)函數(shù)的圖象。
教師總結:我們畫對數(shù)函數(shù)的圖象,既可用描點法,也可用圖象變換法,下邊我們利用兩種方法畫對數(shù)函數(shù)的圖象。
方法一(描點法)首先列出x,y(y=log2x,y=log x)值的對應表,因為對數(shù)函數(shù)的定義域為x>0,因此可取x= , , ,1,2,4,8,請計算對應的y值,然后在坐標系內(nèi)描點、畫出它們的圖象.
方法二(圖象變換法)因為對數(shù)函數(shù)和指數(shù)函數(shù)互為反函數(shù), 圖象關于直線y=x對稱,所以只要畫出y=ax的圖象關于直線y=x對稱的`曲線,就可以得到y(tǒng)=logax.的圖象。學生動手做實驗,先描出y=2x的圖象,畫出它關于直線y=x對稱的曲線,它就是y=log2x的圖象;類似的從y=( )x 的圖象畫出y=log x的圖象,再出示課件,教師加以解釋。
設計意圖:用這種對稱變換的方法畫函數(shù)的圖象,可以加深和鞏固學生對互為反函數(shù)的兩個函數(shù)之間的認識,便于將對數(shù)函數(shù)的圖象和性質(zhì)與指數(shù)函數(shù)的圖象和性質(zhì)對照,但使用描點法畫函數(shù)圖象更為方便,兩種方法可同時進行,分析畫法之后,可讓學生自由選擇畫法。
這樣可以充分調(diào)動學生自主學習的積極性。
。3)對數(shù)函數(shù)的性質(zhì)
在理解對數(shù)函數(shù)定義的基礎上,掌握對數(shù)函數(shù)的圖象和性質(zhì)是本節(jié)的重點,關鍵在于抓住對數(shù)函數(shù)是指數(shù)函數(shù)的反函數(shù)這一要領,講對數(shù)函數(shù)的性質(zhì),可先在同一坐標系內(nèi)畫出上述兩個對數(shù)函數(shù)的圖象,根據(jù)圖象讓學生列表分析它們的圖象特征和性質(zhì),然后出示課件,教師補充。
作了以上分析之后,再分a>1與0<a<1兩種情況列出對數(shù)函數(shù)圖象和性質(zhì)表,體現(xiàn)了從“特殊到一般”、“從具體到抽象”的方法。出示課件并進行詳細講解,把對數(shù)函數(shù)圖象和性質(zhì)列成一個表以便讓學生對比著記憶。
設計意圖:這種講法既嚴謹又直觀易懂,還能讓學生主動參與教學過程,對培養(yǎng)學生的創(chuàng)新能力有幫助,學生易于接受易于掌握,而且利用表格,可以突破難點。
由于對數(shù)函數(shù)和指數(shù)函數(shù)互為反函數(shù),它們的定義域與值域正好互換,為了揭示這兩種函數(shù)之間的內(nèi)在聯(lián)系,列出指數(shù)函數(shù)與對數(shù)函數(shù)對照表(見課件)
設計意圖:通過比較對照的方法,學生更好地掌握兩個函數(shù)的定義、圖象和性質(zhì),認識兩個函數(shù)的內(nèi)在聯(lián)系,提高學生對函數(shù)思想方法的認識和應用意識。
4、鞏固達標(見課件)
這一訓練是為了培養(yǎng)學生利用所學知識解決實際問題的能力,通過這個環(huán)節(jié)學生可以加深對本節(jié)知識的理解和運用,并從講解過程中找出所涉及的知識點,予以總結。充分體現(xiàn)“數(shù)形結合”和“分類討論”的思想。
5、反饋練習(見課件)
習題是對學生所學知識的反饋過程,教師可以了解學生對知識掌握的情況。
6、歸納總結(見課件)
引導學生對主要知識進行回顧,使學生對本節(jié)有一個整體的把握,因此,從三方面進行總結:對數(shù)函數(shù)的概念、對數(shù)函數(shù)的圖象和性質(zhì)、比較對數(shù)值大小的方法。
7、課外作業(yè) :(1)完成P178 A組1、2、3題
。2)當?shù)讛?shù)a>1與0<a<1時,底數(shù)不同,對數(shù)函數(shù)圖象有什么持點?
五、說板書
板書設計為表格式(見課件),這樣的板書簡明清楚,重點突出,加深學生對圖象和性質(zhì)的理解和掌握,便于記憶,有利于提高教學效果。
【高一數(shù)學對數(shù)函數(shù)說課稿】相關文章:
高一數(shù)學必修1《對數(shù)函數(shù)》說課稿08-28
高一數(shù)學對數(shù)函數(shù)教案04-10
人教A版高一數(shù)學 對數(shù)函數(shù)及其性質(zhì)的說課稿06-20
人教版高一數(shù)學必修1說課稿 對數(shù)函數(shù)及其性質(zhì)11-02
對數(shù)函數(shù)的說課稿03-18
高一數(shù)學教案:對數(shù)函數(shù)04-08
高中數(shù)學對數(shù)函數(shù)說課稿04-07
對數(shù)函數(shù)說課稿11-09
對數(shù)函數(shù)說課稿11-04