有理數加法教案范文
學習目標:
1.理解有理數加法意義
2.掌握有 理數加法法則,會正確進行有理數加法運算
3.經歷探究有理數有理數加法法則過程,學會與他人交流合作
學習重點:和 的符號的確定
學習難點:異號兩數相加的法則
學法指導:
在探討有理數的加法法則問題時,利用物體在同一直線上兩次運動的過程,理解有理數運算法則。先仔細觀察式子的特點,找到合理的運算步驟,使加法運算簡便。
學習過程
(一)課前學習導引:
1. 如果向東走5米記作+5米,那么向西走3米記作
2. 比較 大小:2 -3,-5 - 7,4
3. 已知a=-5,b=+ 3, 則︱a ︳+︱ b︱=
(二)課堂學習導引
正有理數及0的加法運算,小學已經學過,然而實 際問題中做加法運算的數有可能超出正數范圍。例如,足球循環(huán)賽中,可以把進球數記為正數,失球數記為負數,它 們的和叫做 凈勝球數。如果,紅隊進4個球,失2個球;藍隊進1個球,失1個球.于是
(1)紅隊的凈勝球數為 4+(-2) ,
(2)藍隊的凈勝球數為 1+(-1) 。
這里用到正數和負數的加法。那么,怎樣計算4+(-2),1+(-1)的結果呢?
現在讓我們借助數軸來討論有理數的加法:某人從一點出 發(fā),經過下面兩次運動,結果的.方向怎樣?離開出發(fā)點的距離是多少?規(guī)定向東為正,向西為負,請同學們用數學式子表示
、傧认驏|走了5米 ,再向東走3米 ,結果怎樣?可以 表示為
、谙认蛭髯吡5米,再向西走了3米,結果如何?可以表示為:
、巯认驏|走了5米,再向西走了3米,結果呢?可以表示為:
、芟认蛭髯吡5米,再向東走了3米,結果呢?可以表示為:
、菹认驏|走了5米,再向西走了5米,結果呢?可以表示為:
⑥先向西走5米,再向東走5米,結果呢?可以表示為:
從以上幾個算式中總結有理數加法法則:
(1)、同號的兩數相加,取 的符號,并把 相加.
(2).絕對值不相等的異號兩數相加, 取 的加數 的 符號, 并用較大的絕對值 較小的絕對值. 互為相反數的 兩個數相加得 .
(3)、一個數同0相加,仍得 。
例1 計算(能完成嗎,先自己動動手吧!)
(-3)+( -9) (2)(-4.7)+3.9
例2 足球循環(huán)賽中,
紅隊勝黃隊4: 1,黃隊勝藍隊1 :0,藍隊勝紅隊1: 0,計算 各隊的 凈勝球數。
解:每個隊的進球總數記為正數,失球總數記為負數,這 兩數的和為這隊的凈勝球數。
三場比賽中,
紅隊共進4球,失2球,凈勝球數為(+4)+(2)=+(42 )= ;
黃隊共進2球,失4球,凈勝球數為(+2)+(4)= (4
藍隊共進( )球,失( )球, 凈勝球數為 = 。
(三)課堂檢測導引:
(1)(-3)+(-5)= ; (2)3+(-5)= ;
(3)5+(-3)= ; (4)7+(-7)= ;
(5)8+(-1)= ; (6)(-8)+1 = ;
(7)(-6)+0 = ; (8)0+(-2) = ;
(四)課堂學習小結
1.本節(jié)課中你學到了什么知識?
2.你覺得有理數加法比較難掌握的是哪里?
(五)學后拓延導引
1.計算:
(1)(-13)+(-18); (2)20+(-14);
(3)1.7 + 2.8 ; (4)2.3 + (-3.1);
(5) (- )+(- ); (6)1 +(-1.5 );
(7)(-3.04)+ 6 ; (8) +(- ).
2.判斷題:
(1)兩個負數的和一定是負數; ( )
(2)絕對值相等的兩個數的和等于零; ( )
(3)若兩個有理數相加時的和為負數,這兩個有理數一定都是負數; ( )
(4)若兩個有理數相加時的和為正數,這兩個有理數一定都是正數. ( )
3.當a = -1.6,b = 2.4時,求a+b和a+(-b)的值.
【有理數加法教案】相關文章:
有理數的加法教案03-02
有理數的加法教案11-26
《有理數的加法》教案09-19
有理數的加法教案范文07-04
有理數的加法優(yōu)秀教案07-04
《有理數的加法》優(yōu)質教案09-12
有理數的加法與減法教案07-22
有理數的加法教案范文08-26
有理數的加法的教案設計07-04