教案:多邊形內(nèi)角和與外角和
作為一位杰出的教職工,時(shí)常會(huì)需要準(zhǔn)備好教案,教案是教材及大綱與課堂教學(xué)的紐帶和橋梁。教案應(yīng)該怎么寫(xiě)才好呢?下面是小編整理的教案:多邊形內(nèi)角和與外角和,僅供參考,希望能夠幫助到大家。
教案:多邊形內(nèi)角和與外角和 1
一、教學(xué)目標(biāo)
1、知識(shí)目標(biāo)
(1)使學(xué)生了解多邊形的有關(guān)概念。
(2)使學(xué)生掌握多邊形內(nèi)角和公式,并學(xué)會(huì)運(yùn)用公式進(jìn)行簡(jiǎn)單的計(jì)算。
2、能力目標(biāo)
(1)通過(guò)對(duì)“多邊形內(nèi)角和公式”的探究,培養(yǎng)學(xué)生分析問(wèn)題、解決問(wèn)題的能力,同時(shí)讓學(xué)生充分領(lǐng)會(huì)數(shù)學(xué)轉(zhuǎn)化思想。
(2)通過(guò)變式練習(xí),培養(yǎng)學(xué)生動(dòng)手、動(dòng)腦的實(shí)踐能力。
3、情感與態(tài)度目標(biāo)
通過(guò)公式的猜想、歸納、推斷一系列過(guò)程,體驗(yàn)數(shù)學(xué)活動(dòng)充滿著探索性和創(chuàng)造性,培養(yǎng)學(xué)生對(duì)學(xué)習(xí)數(shù)學(xué)勇于創(chuàng)新的精神。
二、教材分析
《多邊形的內(nèi)角和》是七年級(jí)下冊(cè)第7.3章第二節(jié)內(nèi)容,本節(jié)內(nèi)容安排一個(gè)課時(shí)。為了更好地突出重點(diǎn)、突破難點(diǎn),圓滿地完成教學(xué)任務(wù),取得較好的教學(xué)效果。根據(jù)教材和學(xué)生的特點(diǎn),本節(jié)課我采用了“觀察、點(diǎn)撥、發(fā)現(xiàn)、猜想”等探究式教學(xué)方式,在創(chuàng)設(shè)問(wèn)題,新課引入等教學(xué)環(huán)節(jié)中,我提出問(wèn)題,質(zhì)疑,引導(dǎo)學(xué)生觀察,分析、思考等。啟發(fā)、點(diǎn)撥下發(fā)現(xiàn)問(wèn)題的方法。這種教學(xué)方法目的在讓學(xué)生通過(guò)觀察、猜想、主動(dòng)探討獲得新知識(shí),同時(shí)培養(yǎng)學(xué)生分析、歸納、概括能力,培養(yǎng)學(xué)生的創(chuàng)新意識(shí)和創(chuàng)造精神。
三、學(xué)校與學(xué)生情況分析
海南省樂(lè)東縣千家中學(xué)是一所少數(shù)民族的初級(jí)中學(xué),全部都來(lái)自于貧困的農(nóng)村,學(xué)校的教學(xué)條件比較落后。因此,大部分學(xué)生的基礎(chǔ)知識(shí)以及學(xué)習(xí)風(fēng)氣都比較差一些。不過(guò)這個(gè)學(xué)期在新教材,新的教學(xué)理念指導(dǎo)下,在新的課堂教學(xué)方法中,逐步淡化了過(guò)分訓(xùn)練,而是重視學(xué)生學(xué)習(xí)興趣和態(tài)度的培養(yǎng),重視學(xué)生的自主探索和合作交流以及創(chuàng)新意識(shí)的`培養(yǎng)。另外在少數(shù)民族地區(qū)七年級(jí)的學(xué)生年齡較大一些。他們?cè)诎嗬镩_(kāi)始逐步形成了自己動(dòng)手實(shí)踐,自主探索和合作交流的良好習(xí)慣,師生互動(dòng)的氣氛也逐步形成。
四、教學(xué)設(shè)計(jì)
(一)創(chuàng)設(shè)問(wèn)題情境,引出新課。
1、以疑導(dǎo)入,引發(fā)求知欲。先展示水立方、蜂窩、六螺帽,八角石英鐘、多邊形水果盤(pán)等多邊形實(shí)物。由此激發(fā)學(xué)生自己要設(shè)計(jì),怎樣設(shè)計(jì)的求知欲。然后提出具體問(wèn)題。
引題:我們學(xué)校要準(zhǔn)備建造一個(gè)各邊長(zhǎng)為5米,各內(nèi)角都相等的六邊形花壇。問(wèn)各角是多少度?
2、復(fù)習(xí)提問(wèn),知識(shí)鞏固。
、湃切蝺(nèi)角和等于多少度?(180°)
問(wèn)題1、教室中有四邊形的物體嗎?是怎樣的四邊形??jī)?nèi)角和分別是多少度?問(wèn)題2:你知道長(zhǎng)方形和正方形的內(nèi)角和是多少?
其它四邊形的內(nèi)角和是多少?
問(wèn)題3、猜一猜:任意一個(gè)四邊形的內(nèi)角和可能是多少度?
生:因?yàn)槿我馊切蔚膬?nèi)角和為180,而長(zhǎng)方形和正方形的內(nèi)角和為360,因此可猜想:任意一個(gè)四邊形的內(nèi)角和為360。
、扑倪呅蝺(nèi)角和定理以及推導(dǎo)方法。
3、引入新課
上一節(jié)課學(xué)習(xí)了求四邊形內(nèi)角和的方法,怎樣求五邊形、六邊形n邊形的內(nèi)角和呢?下面我們一起來(lái)討論這個(gè)問(wèn)題(板書(shū)課題)。
(二)引導(dǎo)探索,研討新知
1、以動(dòng)激趣,淺探求知。
一畫(huà):畫(huà)三角形、四邊形、五邊形、六邊形(讓學(xué)生自己動(dòng)手畫(huà))。
二量:量出五邊形、六邊形各內(nèi)角,并求出其和(讓學(xué)生自己求知)。(誤差)
三比較:比較四邊形、五邊形、六邊形分別是三角形內(nèi)角和的多少倍,并由此去探索他們之間的初步規(guī)律。
2、觀察聯(lián)想,啟迪思維。
(1)觀察引探:觀察比較以上結(jié)論后,啟發(fā)提問(wèn):“邊數(shù)少的多邊形可以通過(guò)量角來(lái)求和,如果邊數(shù)很多那又怎么辦?由上述結(jié)論可知,多邊形的內(nèi)角和是三角形內(nèi)角和的若干倍,那么這個(gè)倍數(shù)與多邊形的邊數(shù)有何關(guān)系?能否找出其規(guī)律?”(讓學(xué)生猜想,大膽嘗試)
(2)啟發(fā)聯(lián)想:我們已經(jīng)學(xué)過(guò)求四邊形內(nèi)角和的推導(dǎo)方法,它是以三角形為基礎(chǔ)求得的,即連結(jié)一條對(duì)角線,將四邊形分割為兩個(gè)三角形,其和為180°×2,那么五邊形、六邊形、 n邊形能否依此類推呢?
3、討論、交流、創(chuàng)新
教案:多邊形內(nèi)角和與外角和 2
課題
探索多邊形內(nèi)角和
教學(xué)目標(biāo)
知識(shí)目標(biāo)
1、探索多邊形內(nèi)角和定義、公式
2、正多邊形定義
能力目標(biāo)
1、發(fā)展學(xué)生的合情推理意識(shí)、主動(dòng)探索的習(xí)慣
2、發(fā)展學(xué)生的說(shuō)理能力和簡(jiǎn)單的推理意識(shí)及能力
德育目標(biāo)
培養(yǎng)用多邊形美花生活的意識(shí)
教學(xué)重點(diǎn)
多邊形內(nèi)角和公式的推導(dǎo)
學(xué)難點(diǎn)
多邊形內(nèi)角和公式的簡(jiǎn)單運(yùn)用
教學(xué)方法
探索、討論、啟發(fā)、講授
教學(xué)手段
利用學(xué)生剪紙、投影儀進(jìn)行教學(xué)
教學(xué)過(guò)程:
一、引入:
1、出示多媒體投影片或出示事物圖:正方形石英鐘、五邊形(廣場(chǎng)圖)、六變形螺母、八邊形。
2、給出多邊形概念:多邊形的頂點(diǎn)、邊、內(nèi)角和、對(duì)角線及其有關(guān)概念。
二、多邊形內(nèi)角和公式:
1、三角形的內(nèi)角和是多少度?任意四邊形的`內(nèi)角和是多少度?怎樣得到的?那么五邊形的內(nèi)角和怎樣求呢?要求學(xué)生剪紙或畫(huà)圖找出五邊形可剪成多少個(gè)三角形求內(nèi)角和?六邊形可怎樣剪成三角形?n邊形呢?
2、學(xué)生討論:在剪紙及畫(huà)圖活動(dòng)中充分的探索、交流、體會(huì),先獨(dú)立思考,然后小組討論、交流,發(fā)表不同見(jiàn)解。探索五邊形內(nèi)角和的不同方法:(學(xué)生可能得出如圖一、圖二、圖三中的不同方法)
。1)量出每個(gè)內(nèi)角度數(shù)然后相加為540°;
(2)從五邊形的任一頂點(diǎn)出發(fā),連結(jié)不相鄰的兩個(gè)頂點(diǎn),將五邊形分割成三個(gè)三角形,得出五邊形內(nèi)角和為540°(如圖一);
。3)在五邊形內(nèi)任取一點(diǎn),連結(jié)各頂點(diǎn),將五邊形分割成五個(gè)三角形,得出五邊形內(nèi)角和為5×180°—360°=540°(如圖二);
。4)從五邊形任意一邊上取一點(diǎn),連接不相鄰的頂點(diǎn),將五邊形分割成四個(gè)三角形內(nèi)角和為4×180°—180°=540°(如圖三);
。5)六邊形可怎樣剪成三角形求內(nèi)角和?n邊形呢?
。6)總結(jié)規(guī)律:多邊形內(nèi)角和為(n—2)×180°(n≥3)。
3、議一議:
(1)過(guò)四邊形一個(gè)頂點(diǎn)的對(duì)角線把四邊形分成兩個(gè)三角形;
。2)過(guò)五邊形一個(gè)頂點(diǎn)的對(duì)角線把五邊形分成( )個(gè)三角形;
(3)過(guò)六邊形一個(gè)頂點(diǎn)的對(duì)角線把六邊形分成( )個(gè)三角形。
(4)過(guò)n邊形一個(gè)頂點(diǎn)的對(duì)角線把n邊形分成( )個(gè)三角形;
三、正多邊形定義:
1、出示課本第109頁(yè)想一想圖:(思考,圖中的多邊形各是幾邊形,它們的邊和角有什么特點(diǎn))
2、多邊形定義:在平面內(nèi),內(nèi)角都相等,邊也相等的多邊形是正多邊形。
3、填表:
四、小結(jié):
主要表?yè)P(yáng)本節(jié)課同學(xué)們很善于思考,對(duì)所學(xué)知識(shí)應(yīng)用得很好,做得好的小組及他們做得好的地方。
五、布置作業(yè):
課本P110、習(xí)題4、10第1、2、3題。
附:選用隨堂練習(xí):
1、一個(gè)多邊形的每個(gè)內(nèi)角都是140,它是()邊形?
2、過(guò)四邊形一頂點(diǎn)的對(duì)角線把它分成兩個(gè)三角形,過(guò)五邊形一個(gè)頂點(diǎn)的對(duì)角線把它分成()個(gè)三角形。
3、過(guò)六邊形的一個(gè)頂點(diǎn)的對(duì)角線把它分成()個(gè)三角形,過(guò)n邊形的一個(gè)頂點(diǎn)的對(duì)角線把n邊形分成()個(gè)三角形。
4、一個(gè)多邊形的每個(gè)內(nèi)角都是140°,這個(gè)多邊形是()邊形。
5、如果一個(gè)多邊形的邊數(shù)增加1,那么這時(shí)它的內(nèi)角和增加了()度。
6、下列角能成為一個(gè)多邊形的內(nèi)角和的是()
A、270°B、560°C、1800°D、1900°
思考題:如圖(1),求∠A+∠B+∠C+∠D+∠E+∠F等于多少度?
如圖(2),求∠A+∠B+∠C+∠D+∠E+∠F+∠G等于多少
教案:多邊形內(nèi)角和與外角和 3
【教學(xué)目標(biāo)】
1.掌握多邊形的內(nèi)角和的計(jì)算方法,并能用內(nèi)角和知識(shí)解決一些簡(jiǎn)單的問(wèn)題.
2.經(jīng)歷探索多邊形內(nèi)角和計(jì)算公式的過(guò)程,體會(huì)如何探索研究問(wèn)題.
3.通過(guò)將多邊形"分割"為三角形的過(guò)程體驗(yàn),初步認(rèn)識(shí)"轉(zhuǎn)化"的數(shù)學(xué)思想.
【教學(xué)重點(diǎn)與教學(xué)難點(diǎn)】
1.重點(diǎn):多邊形的內(nèi)角和公式
2.難點(diǎn):多邊形內(nèi)角和的推導(dǎo)
3.關(guān)鍵:.多邊形"分割"為三角形.
【教具準(zhǔn)備】
三角板、卡紙
【教學(xué)過(guò)程】
一、創(chuàng)設(shè)情景,揭示問(wèn)題
1、在一次數(shù)學(xué)基礎(chǔ)知識(shí)搶答賽中,老師出了這么一個(gè)問(wèn)題,一個(gè)五邊形的所有角相加等于多少度?一個(gè)學(xué)生馬上能回答,你們能嗎?
2、教具演示:將一個(gè)五邊形沿對(duì)角線剪開(kāi),能分割成幾個(gè)三角形?
你能說(shuō)出五邊形的內(nèi)角和是多少度嗎?(點(diǎn)題)意圖:利用搶答問(wèn)題和教具演示,調(diào)動(dòng)學(xué)生的學(xué)習(xí)興趣和注意力
二、探索研究學(xué)會(huì)新知
1、回顧舊知,引出問(wèn)題:
(1)三角形的內(nèi)角和等于_________.外角和等于____________
(2)長(zhǎng)方形的內(nèi)角和等于_____,正方形的內(nèi)角和等于__________.
2、探索四邊形的內(nèi)角和:
(1)學(xué)生思考,同學(xué)討論交流.
。2)學(xué)生敘述對(duì)四邊形內(nèi)角和的認(rèn)識(shí)(第一二組通過(guò)測(cè)量相加,第三四組通過(guò)畫(huà)對(duì)角線分成兩個(gè)三角形.)回顧三角形,正方形,長(zhǎng)方形內(nèi)角和,使學(xué)生對(duì)新問(wèn)題進(jìn)行思考與猜想.以四邊形的內(nèi)角和作為探索多邊形的突破口。
(3)引導(dǎo)學(xué)生用"分割法"探索四邊形的內(nèi)角和:
方法一:連接一條對(duì)角線,分成2個(gè)三角形:
180°+180°=360°
從簡(jiǎn)單的思維方式發(fā)散學(xué)生的想象力達(dá)到"分割"問(wèn)題,并讓學(xué)生發(fā)現(xiàn)問(wèn)題,解決問(wèn)題教學(xué)步驟教學(xué)內(nèi)容備注方法二:在四邊形內(nèi)部任取一點(diǎn),與頂點(diǎn)連接組成4個(gè)三角形.
180°×4-360°=360°
3、探索多邊形內(nèi)角和的問(wèn)題,提出階梯式的問(wèn)題:
你能嘗試用上面的.方法一求出五邊形的內(nèi)角和嗎?(第一二組)
你能嘗試用上面的方法一求出六邊形的內(nèi)角和嗎?(第三,四組)那么n邊形呢?完成后填表:
n邊形3456...n分成三角形的個(gè)數(shù)1234...n-2內(nèi)角和...
。1)一個(gè)八邊形的內(nèi)角和是_____________度
。2)一個(gè)多邊形的內(nèi)角和是720度,這個(gè)多邊形是_____邊形
。3)一個(gè)正五邊形的每一個(gè)內(nèi)角是________,那么正六邊形的每個(gè)內(nèi)角是_________
通過(guò)學(xué)生動(dòng)手去用分割法求五(六)邊形的內(nèi)角和,從簡(jiǎn)單到復(fù)雜,從而歸納出n邊形的內(nèi)角和
三、點(diǎn)例透析
運(yùn)用新知例題:想一想:如果一個(gè)四邊形的一組對(duì)角互補(bǔ),那么另一組對(duì)角有什么關(guān)系呢?
四、應(yīng)用訓(xùn)練強(qiáng)化理解
4、第83頁(yè)練習(xí)1和2多邊形內(nèi)角和定理的應(yīng)用
五、知識(shí)回放
課堂小結(jié)提問(wèn)方式:本節(jié)課我們學(xué)習(xí)了什么?
1多邊形內(nèi)角和公式
2多邊形內(nèi)角和計(jì)算是通過(guò)轉(zhuǎn)化為三角形
六、作業(yè)練習(xí)
1、書(shū)面作業(yè):
2、課外練習(xí):
【教案:多邊形內(nèi)角和與外角和】相關(guān)文章:
《多邊形的內(nèi)角和》教學(xué)設(shè)計(jì)06-19
多邊形內(nèi)角和定理證明05-17
《多邊形的內(nèi)角和》教學(xué)設(shè)計(jì)范文06-16
《多邊形的內(nèi)角和》的教學(xué)設(shè)計(jì)(精選11篇)04-13
七年級(jí)《多邊形的內(nèi)角和》教學(xué)設(shè)計(jì)范文06-17
正多邊形和圓教學(xué)反思07-16
《三角形的內(nèi)角和》教案設(shè)計(jì)06-19
四邊形內(nèi)角和定理的證明06-25